
Model / View / Controller

MVC origins

● 1979 - Trygve Reenskaug
● working in Smalltalk at Xerox PARC
● paper: Applications Programming in

SmallTalk-80 : How to use Model-View-
Controller

● “isolates business logic from user interface
considerations”

MVC concepts

● Model – application state and business logic
● View – user interface / visualization
● Controller – manages communication of user

actions to Model

MVC example

Model
int a, b, c;

BarChartView

a
b cSpreadSheetView

a 7
b 4
c 5

PieChartView

Potentially many views!

Microsoft Foundation Classes

● MFC
● User interface framework for creating

applications with a common look and feel (i.e.
Windows!)

● MFC Document / View
● Document = “Model”
● View = “View and Controller”, handling both

user “input” and visualization “output”

Implementation

● Classic MVC as well as MFC Document / View
assume that Views are stateful

● Views encapsulate state and behaviour = OOP
objects, instances of classes

Implementation

● Stateful Views brings up the issue of
synchronization

● Views need to synchronize own state to Model
state

● “Gang of Four” (Design Patterns) describe various
tradeoffs in the Observer pattern...

MVC is a good thing!

● Generally very applicable to a wide range of
application domains

● Clearly separates concerns:
● Model = state & business logic
● View = gui and presentation
● Controller = routes user input to changes in

Model

HOWEVER!

While the premise of a View being stateful is
intuitive for programmers trained in OOP (i.e. an
object encapsulates state and behaviour), this can

be severely limiting!

The Issue & The Assumption

● The main issue:
● Views implicitly cache Model state

● The assumption:
● A visualization should be / is stateful...

The Issue & The Assumption

● The main issue:
● Views implicitly cache Model state

● The assumption:
● A visualization should be / is stateful...

FALSE!

“but we've always done things
this way!”

● The premise of a stateful View is DEEPLY
entrenched in a wide range of popular object
oriented visualization / gui packages:
● MFC
● Ogre
● HTML DOM
● Java Server Pages / Java Beans

Trends in the Swedish game
industry

● I have never seen a professional (Swedish) game
renderer that is NOT stateful!

● This is called Retained Mode (i.e. the renderer
“retains” application state internally)

● This is the classic “scene graph”, a hierarchy of
“nodes”

● node = mesh + material + transform + etc

Why Retained Mode?

● Historically, Retained Mode was required to
achieve real-time performance
● i.e. recursive frustum culling of pre-transformed

bounding hierarchies
● “retain much state and only update when

absolutely required”

Windows too!

● The design of Win32 / GDI based on the same
principle

● Ca 1993 too expensive to repaint hi-res displays
(640x480x8bit) at 60hz (multiple overlapping
windows, etc)

● GDI operates asynchronously with a system of
“dirty rects” and centrally managed rendering, i.e.
WM_PAINT messages

MFC as a wrapper

● MFC = an OOP wrapper for Win32 / GDI
● Exposes aspects of the gui as classes / objects, with

interfaces to allow transfer of application state to
gui state

● Rendering not controlled by application, i.e. “The
Hollywood Principle = don't call us, we'll call
you...”

Direct X

● Developed in an attempt to make Windows 95 a
viable platform for games (i.e. GDI is too slow!)

● DirectX Graphics (ca 1996) had both Retained
Mode (RM) and Immediate Mode (IM)

Direct X Immediate Mode

● No “scene graph”, no “instance” abstraction, no
“camera” abstraction

● Little retained state
● Low level
● Complex
● Application needs to do lots more work, but game

coders wanted the control... RM soon dropped
from DirectX

Early trends

● Games tended to build a “renderer” on top of the
low level DirectX IM interfaces

● This was before HW T & L!
● Games needed to be very smart about what they

sent to the GPU
● Ca 1997, Quake 2 used BSP / PVS to minimize the

amount of geometry sent to the GPU

Early trends

● Standardization of common tasks, need for
productivity, asset pipeline issues... all led to the
“engine” approach

● Low level API's wrapped into a higher level
abstraction that the application level programmers
could use more easily

● Also, we all loved OOP and Design Patterns...

Today

● GPUs are outperforming CPUs in number-
crunching applications

● The biggest bottleneck is the bus
● Brute force approaches are starting to become

more viable than clever CPU level optimizations
● The GPU can take it!

Jungle Peak ca 2006

● DirectX 9 HLSL application
● Sort by shader/texture/technique
● Huge batches (800 000+ vertices), single

DrawIndexedPrimitive() call
● Merge multiple instances of meshes into single

mesh, sorted by shader (i.e. forests)
● Did not split and cull to frustum, fewer draw calls

gave us better performance

Conclusion

There is no longer any performance reason to have a
stateful visualisation...

MVC revisited

● What is a non-stateful View?

MVC revisited

● What is a non-stateful View?
● Basically a procedural interface
● Very much what DirectX 9 is

MVC revisited

“Oh yeah? What about SetRenderState()?”

MVC revisited

● SetRenderState() basically avoids HUGE
parameter lists in DrawPrimitiveXXX() methods

● Drivers reserve the right to propagate DirectX state
to the GPU at any time, even waiting until the
actual draw call

MVC revisited

● Observe also the design of HLSL
● Pushes the “stateless” concept even further, by

supplying all state to the shader at render time

MVC revisited

“So, if View is 'a bunch of functions' with no state,
how do we describe what gets rendered, and how,

and when?”

MVC revisited

● Enter the Controller
● 2 jobs:

● 1) doInput() = react to user input, and direct how
that input is allowed to change Model

● 2) doOutput() = dynamically, in real time,
compose the current “view” of the application
using View

MVC revisited

● Controller basically “programs” View to present a
visualization to the user (in real time)

● This includes everything you see on the screen,
including guis

MVC summary

● Controller manages both input and output
● View exposes ways to query user input, as well as

render output, but is in itself entirely passive
● Model encapsulates application state as well as

application logic / behaviour

MVC gains

● No more state caches
● Removal of most (if not all) state caches in

View make sync with Model trivial (if not non-
existent)

● Such (manual) syncing is often a major burden
and source of bugs

MVC gains

● Dynamic “views”
● Controller dynamically and procedurally

“calculates” the “view” of the application.
● Allows for any number of very disparate “views”

and makes switching between them very easy to
implement.

● Allows for “in-app” editors, debug views, etc

Supporting technologies

● Immediate Mode Graphical User Interface
(IMGUI)
● New way of authoring and deploying guis
● Much faster, more intuitive, and more productive

than traditional Retained Mode guis (i.e. MFC)
● Geared towards real-time applications with real-

time rendering, i.e. perfect for games

Supporting technologies

● Automated Persistence
● Basically a language extension for C++
● Mark any data as persistent across application

executions
● Persistence is automatic and transparent

Tell me more!

IMGUI? Automated Persistence?

I'm working on the book...

http://www.johno.se

http://www.johno.se/

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

